Methods for Interpretation of Patient-Reported Outcomes

Joseph C. Cappelleri, PhD, MPH Pfizer Inc joseph.c.cappelleri@pfizer.com

Invited one-hour tutorial at BASS XXV – 25th Annual Biopharmaceutical Applied Statistics Symposium, Savannah, Georgia, October 15-19, 2018

Learning Objective

• To understand the methods for interpretation of patient-reported outcomes

Outline

- Anchor-based approaches
 - Percentage based on thresholds
 - Criterion-group interpretation
 - Statistical significance and clinical equivalance
 - Content-based interpretation
 - Clinical important difference
- Distribution-based approaches
 - Standardized effect size
 - Probability of relative benefit
 - Cumulative distribution function
- Mediation analysis

Importance of Interpretation

- PRO results must be interpreted by attaching meaning to them
- Patients and other stakeholders benefit
- Applying methods to enrich interpretation of PRO scores

Anchor-based Approaches

What is an Anchor?

- Anchor measure is external to the target PRO measure of interest
- Anchor measure should bear an appreciable correlation with the PRO measure
- Anchor measure should itself be clearly interpretable

Percentage Based on Thresholds

- Show percentage of patients above and below some specified value, which is an anchored value with a meaningful criterion.
- Example: Erectile function domain of International Index of Erectile Function
- Example: Severity categorization on Fibromyalgia Impact Questionnaire (FIQ)

Severity Categorization of FIQ Total Score Using Pain Severity as an Anchor

Source: Bennett et al. 2009

Simulated Example in SAS: FIQ Severity Categorization (first 3 subjects)

VIEW.	/IABLE: Work_mixed_2				
	ID	Visit	Score	Pain	
1	1	1	86.477679987	9.4652601914	
2	1	2	73.332337615	7.9678018435	
3	2	1	84.024696292	8.9303289077	
4	3	1	86.354397654	9.1243845085	
5	3	2	70.958155512	6.6441290133	
6	3	3	52.8051996	5.8536769545	
7	3	4	43.765302507	4.6849460105	
8	3	5	42.117163151	3.326784542	
9	3	6	16.134948499	1.9310167857	
10	3	7	15.65229953	0.8598846265	
<					

SAS Code: FIQ Severity Categorization

<pre>Proc Mixed data=_mixed_2;</pre>							
Class ID Visit ;							
Model Score = Pain / ddfm=kr s;							
Repeated Visit / Type=UN Subject=ID;							
Estimate " Pain =0 " Intercept 1 Pain 0 /cl;							
Estimate " Pain =1 " Intercept 1 Pain 1 /cl;							
Estimate " Pain =2 " Intercept 1 Pain 2 /cl;							
Estimate " Pain =3 " Intercept 1 Pain 3 /cl;							
Estimate " Pain =4 " Intercept 1 Pain 4 /cl;							
Estimate " Pain =5 " Intercept 1 Pain 5 /cl;							
Estimate " Pain =6 " Intercept 1 Pain 6 /cl;							
Estimate " Pain =7 " Intercept 1 Pain 7 /cl;							
Estimate " Pain =8 " Intercept 1 Pain 8 /cl;							
Estimate " Pain =9 " Intercept 1 Pain 9 /cl;							
Estimate " Pain =10" Intercept 1 Pain 10 /cl;							
Estimate " Pain =3.5 " Intercept 1 Pain 3.5 /cl;							
Estimate " Pain =6.5 " Intercept 1 Pain 6.5 /cl;							
Run;							

Results from Simulated Example

		Standard				
Label	Estimate	Error	<i>Pr > t </i>	Alpha	Lower	<u>Upper</u>
Pain =0	6.5523	1.8715	0.0024	0.05	2.6299	10.4746
Pain =1	15.5845	1.5984	<.0001	0.05	12.2173	18.9517
Pain =2	24.6168	1.3292	<.0001	0.05	21.7971	27.4364
Pain =3	33.6490	1.0668	<.0001	0.05	31.3650	35.9330
Pain =4	42.6812	0.8179	<.0001	0.05	40.9150	44.4475
Pain =5	51.7135	0.5995	<.0001	0.05	50.4335	52.9935
Pain =6	60.7457	0.4576	<.0001	0.05	59.8182	61.6733
Pain =7	69.7780	0.4679	<.0001	0.05	68.8473	70.7087
Pain =8	78.8102	0.6229	<.0001	0.05	77.5709	80.0495
Pain =9	87.8425	0.8465	<.0001	0.05	86.1555	89.5294
Pain =10	96.8747	1.0976	<.0001	0.05	94.6826	99.0669
Pain =3.5	38.1651	0.9400	<.0001	0.05	36.1427	40.1876
Pain =6.5	65.2619	0.4408	<.0001	0.05	64.3820	66.1417

Criterion-group Interpretation

- Involves a comparison of scores from the particular group of interest to a criterion group
- Criterion group is a known group worthy of comparison which can serve as a yardstick
- For example, criterion group can be a healthy group, general population, or clinical group

Baseline Mean Scores on the Medical Outcomes Study Sleep Scale: Patients with Fibromyalgia vs. Values from the U.S. General Population

Domain Score (95% CI)

Source: Cappelleri et al. 2009

Classification of Tests on Statistical Significance and Clinical Equivalence

Statistical Significance Test

		Statistically Significant from 0 (95% CI excludes 0)	Not Statistically Significant from 0 (95% CI includes 0)
Clinical	<i>Clinically Equivalent (entire 90% Cl within region of equivalence)</i>	Cell I Clinically Equivalent and Statistically Significant	Cell II Clinically Equivalent and Not Statistically Significant
Equivalence Test		Cell III	Cell IV
	Not Clinically Equivalent (entire 90% Cl not within region of equivalence)	Not Clinically Equivalent and	Not Clinically Equivalent and
		Statistically Significant	Not Statistically Significant

Difference of Control (No ED) Mean versus Pre-treatment and Post-treatment Means on the Self-Esteem Subscale of the Self-Esteem And Relationship Questionnaire

Source: Cappelleri et al. 2006

Content-based Interpretation

- Considered for a multi-item PRO measure
- Uses a representative item, along with its response categories, internal to the measure itself
- Mapping can be obtained using descriptive statistics, item response theory, ordinal logistic regression, and binary logistic regression

Probability of Little or No Difficulty: Near-Vision Subscale of the NEI-VFQ

17

Clinical Important Difference (CID)

- Statistical significance does not imply clinical significance
- PRO score (or change in PRO score) as outcome regressed on an anchor predictor
- Anchor: Patient Global Impression of Change (PGIC, retrospective)

1=very much improved, 2=much improved, 3=minimally improved, 4 = no change, 5 = minimally worse, 6 = much worse, 7 = very much worse

- Anchor: Patient Global Impression—Severity (PGIS, serial)
 1=none, 2=mild, 3=moderate, 4=severe
- Anchor: Clinical Global Impression–Severity (CGIC, serial)

CID on FIQ Using PGIC as Continuous Anchor

Source: Bennett et al. 2009

Dataset Structure in Simulated Example

S VIEV	WEYTABLE Work, mixed 2								
	ID	Treatment	Visit	Baseline	Y	PGIC	ChangeScore	ChangeScorePct	
1	1	1	0	9.75601					
2	1	1	1	9.75601	15.7728	1	6.016796888	61.6727353	
3	1	1	2	9.75601	17.3098	2	7.553782138	77.4269789	
4	2	1	0	10.6291					
5	2	1	1	10.6291	13.8939	1	3.264826284	30.7159251	
6	2	1	2	10.6291	16.0391	1	5.409958472	50.8976174	
7	2	1	3	10.6291	17.6936	2	7.064543684	66.4641778	
8	2	1	4	10.6291	19.0151	2	8.386011809	78.8967278	
9	3	1	0	11.297					
10	3	1	1	11.297	13.6029	1	2.305966046	20.4122409	
11	3	1	2	11.297	15.3573	2	4.060369963	35.9420947	
12	3	1	3	11.297	17.8058	2	6.508858139	57.615931	
13	3	1	4	11.297	21.2385	2	9.941551256	88.0018766	
14	3	1	5	11.297	22.7094	2	11.41240335	101.021751	
15	3	1	6	11.297	21.6062	2	10.30918764	91.2561668	
16	4	1	0	11.4949					
17	4	1	1	11.4949	13.2274	1	1.732509369	15.0720212	
18	4	1	2	11.4949	15.5836	1	4.088712435	35.5698858	
19	4	1	3	11.4949	19.1823	1	7.687446885	66.8771924	
20	4	1	4	11.4949	21.4507	2	9.955827217	86.6110403	
21	4	1	5	11.4949	23.3353	2	11.84039842	103.005928	
22	4	1	6	11.4949	22.335	2	10.84008614	94.3036794	
23	5	1	0	9.84169					
24	5	1	1	9.84169	13.5146	1	3.672902462	37.3198351	
25	5	1	2	9.84169	16.7488	1	6.907063293	70.1816794	
26	5	1	3	9.84169	17.0049	2	7.163168226	72.7839248	
27	5	1	4	9.84169	20.6806	2	10.83886197	110.132122	
28	5	1	5	9.84169	21.314	2	11.47227251	116.568115	
29	5	1	6	9.84169	23.1386	2	13.29694792	135.108381	
30	5	1	7	9.84169	25.3353	3	15.49361641	157.428414 🔤	
<								2	

Proc Mixed Longitudinal Modeling: CID Estimation (Continuous Anchor)

```
Data _mixed_3;
Set mixed 2;
Where Visit In (1 2 3 4 5 6 7);
Run;
Proc Mixed data=_mixed_3;
Class ID Visit ;
Model ChangeScore = PGIC / ddfm=kr s;
Repeated Visit / Type=AR(1) /*UN*/ Subject=ID;
Estimate "CID(One Category Change) = " PGIC 1 /cl;
Estimate " PGIC=1 " Intercept 1 PGIC 1 /cl;
Estimate " PGIC=2 " Intercept 1 PGIC 2 /cl;
Estimate " PGIC=3 " Intercept 1 PGIC 3 /cl;
Estimate " PGIC=4 " Intercept 1 PGIC 4 /cl;
Estimate " PGIC=5 " Intercept 1 PGIC 5 /cl;
Estimate " PGIC=6 " Intercept 1 PGIC 6 /cl;
Estimate " PGIC=7 " Intercept 1 PGIC 7 /cl;
Run;
```

Estimated Mean Changes and CID

	Standard			
Estimate	Error	Pr > t	Lower	Upper
3.9665	0.0724	<.0001	3.8242	4.1088
4.9722	0.1417	<.0001	4.6939	5.2504
8.9387	0.0987	<.0001	8.7445	9.1328
12.9052	0.0997	<.0001	12.7090	13.1013
16.8717	0.1437	<.0001	16.5893	17.1540
20.8381	0.2046	<.0001	20.4363	21.2400
24.8046	0.2712	<.0001	24.2719	25.3374
28.7711	0.3403	<.0001	28.1028	29.4394
	3.9665 4.9722 8.9387 12.9052 16.8717 20.8381 24.8046	EstimateError3.96650.07244.97220.14178.93870.098712.90520.099716.87170.143720.83810.204624.80460.2712	EstimateError $Pr > t $ 3.9665 0.0724 $<.0001$ 4.9722 0.1417 $<.0001$ 8.9387 0.0987 $<.0001$ 12.9052 0.0997 $<.0001$ 16.8717 0.1437 $<.0001$ 20.8381 0.2046 $<.0001$ 24.8046 0.2712 $<.0001$	EstimateError $Pr > t $ Lower3.9665 0.0724 $<.0001$ 3.8242 4.9722 0.1417 $<.0001$ 4.6939 8.9387 0.0987 $<.0001$ 8.7445 12.9052 0.0997 $<.0001$ 12.7090 16.8717 0.1437 $<.0001$ 16.5893 20.8381 0.2046 $<.0001$ 20.4363 24.8046 0.2712 $<.0001$ 24.2719

Proc Mixed Longitudinal Modeling: CID Estimation (Categorical Anchor) – Sensitivity Analysis

Proc Mixed data=_mixed_3;

Class ID Visit PGIC ;

- Model ChangeScore = PGIC / ddfm=kr s;
- Repeated Visit / Type=AR(1) Subject=ID; Lsmeans PGIC /cl;

Run;

Estimated Mean Changes and CID: Sensitivity Analysis (Same Simulated Data)

			Standard			
<u>Effect</u>	PGIC	Estimate	Error	<i>Pr > t </i>	Lower	Upper
PGIC	1	5.3561	0.1939	<.0001	4.9757	5.7365
PGIC	2	8.7256	0.1233	<.0001	8.4836	8.9677
PGIC	3	12.8642	0.1564	<.0001	12.5572	13.1713
PGIC	4	17.3115	0.2384	<.0001	16.8438	17.7792
PGIC	5	20.6988	0.3406	<.0001	20.0305	21.3672
PGIC	6	25.0653	0.5040	<.0001	24.0764	26.0542
PGIC	7	26.7490	2.3192	<.0001	22.1987	31.2993

Mean Difference in PRO Measure as Function of PGIC

PGIC

Frequencies on PGIC

PGIC	Frequency	<i>Cumulative</i> <i>Percent</i>	<i>Cumulative</i> <i>Frequency</i>	Percent
1	179	14.98	179	14.98
2	518	43.35	697	58.33
3	300	25.10	997	83.43
4	114	9.54	1111	92.97
5	57	4.77	1168	97.74
6	26	2.18	1194	99.92
7	1	0.08	1195	100.00

Distribution-based Methods

Distribution-based Methods

- Based on empirical distribution and characteristics of the data
- Adjunct to, not substitute for, anchor-based methods
- Informs on meaning of difference or change in PRO measure but not whether change is *clinically* significant to patients
- Different types
 - Standardized Effect Size
 - Probability of Relative Benefit
 - Cumulative Distribution Function

Standardized Effect Size

- (Standardized) Effect size = magnitude of effect relative to variability
 - 0.2, 'small'; 0.5, 'medium'; 0.8, 'large'
- Within group: before vs. after therapy
- Between groups: treatments A vs. B

(Standardized) Effect Size

- Within group
 - Effect = average change score on PRO
 - Variability = baseline standard deviation (SD)
 - Or variability = SD of individual changes
- Between groups
 - Effect = average difference between groups at follow-up
 - Or effect = average difference between groups from baseline to follow-up
 - Variability = pooled between-group SD at baseline
 - Or variability = pooled between-group SD at follow-up
 - Or variability = pooled SD of individual changes

Example: Effect Size

- Effect size for all subjects in single intervention study
- Effect size = <u>Mean difference score</u> SD at baseline

Example: Effect Size

SEAR <u>Component</u>	Baseline Mean ± SD	End Mean ± SD	Difference	Effect Size
Sexual Relationship	42 ± 22	78 ± 21	36 ± 23	1.6
Confidence	55 ± 26	81 ± 21	26 ± 26	1.0
Self-esteem	52 ± 27	81 ± 22	29 ± 28	1.1
Overall Relationship	62 ± 30	80 ± 24	18 ± 32	0.6
Overall	48 ± 22	79 ± 20	31 ± 22	1.4

Source: Althof et al. 2003

Probability of Relative Benefit

- Based on Wilcoxon rank-sum test using ridit analysis
- Convert Mann-Whitney *U* statistic to a probability
- Probability represents the chance that a randomly selected patient from the treatment group has a more favorable response than a randomly selected patient from the control group

Example: Probability of Relative Benefit

Cumulative Distribution Function

- An alternative or supplement to responder analysis
- Display a continuous plot of the percent change (or absolute change) from baseline on the horizontal axis and the cumulative percent of patients experiencing up to that change on the vertical axis
- Such a cumulative distribution of response curve one for each treatment group – would allow a variety of response thresholds to be examined simultaneously and collectively, encompassing all available data

Illustrative Cumulative Distribution Function: Experimental Treatment (solid line) better than Control Treatment (dash line) -- Negative changes indicate improvement

Results showing no comparative efficacy of Drug A or Drug B

Results showing the efficacy of Drug A over Drug B

Aricept[®] label from 10/13/2006

Figure 5. Cumulative Percentage of Patients with Specified Changes from Baseline ADAS-cog Scores. The Percentages of Randomized Patients Within Each Treatment Group Who Completed the Study Were: Placebo 93%, 5 mg/day 90% and 10 mg/day 82%.

Cymbalta[®] *label from 11/19/2009* (x-axis *reversed*)

Figure 1: Percentage of Patients Achieving Various Levels of Pain Relief as Measured by 24-Hour Average Pain Severity - Study 1

Mediation Analysis

Basic Mediation Model

A Few Equations

•
$$Y_j = i_1 + b \times X_j + c \times M_j + e_{1j}$$

•
$$M_j = i_2 + a \times X_j + e_{2j}$$

•
$$Y_j = (i_1 + c \times i_2) + (b + c \times a) \times X_j + (c \times e_{2j} + e_{1j})$$

direct effect =
$$100\left(\frac{b}{b+c \times a}\right)$$

$$indirect \ effect = 100 \left(\frac{c \times a}{b + c \times a} \right)$$

Treatment Affects Sleep Directly and Indirectly via Pain

Assumptions

- No unmeasured confounding
 - Predictor-outcome
 - Predictor-mediator
 - Mediator-outcome

- Model with no interaction is correctly specified
 - Predictor and mediator on outcome

Published Example

Source: Russell et al. 2009

Results

Effect	Effects from TRT300 to SLEEP	Effects from TRT450 to SLEEP	Effects from TRT600 to SLEEP
Total	-9.94	-12.73	-17.79
Indirect	-1.95(*)	-3.44	-4.35
(Indirect / Total) x 100%	19.6%(*)	27%	24.4%
(Direct / Total) x 100%	80.4%	73%	75.6%

(*) indicates not statistically significant result, p-value > 0.05

Source: Russell et al. 2009

Testing for Model Invariance between Groups

difference of direct effects (Group 1 vs Group 2):

$$= 100 \left(\frac{b1}{b1+c1 \times a1} - \frac{b2}{b2+c2 \times a2} \right)$$

difference of indirect effects (Group 1 vs Group 2):
$$= 100 \left(\frac{c1 \times a1}{b1+c1 \times a1} - \frac{c2 \times a2}{b2+c2 \times a2} \right)$$

Summary

- Anchor-based approaches
 - Percentage based on thresholds
 - Criterion-group interpretation
 - Statistical significance and clinical equivalance
 - Content-based interpretation
 - Clinical important difference
- Distribution-based approaches
 - Standardized effect size
 - Probability of relative benefit
 - Cumulative distribution function
- Mediation analysis

Journal References: Illustrations Cited

- Althof SE. Cappelleri JC, Shpilsky A, Stecher V, Diuguid C, Sweeney M, Duttagupta S. 2003. Treatment responsiveness of the Self-Esteem And Relationship (SEAR) questionnaire in erectile dysfunction. *Urology* 61:888-893.
- Bennett RM, Bushmakin AG, Cappelleri JC, Zlateva G, Sadosky AB. 2009. Minimally clinically important difference in the Fibromyalgia Impact Questionnaire (FIQ). *Journal of Rheumatology* 36:1304-1311.
- Cappelleri JC, Bushmakin AG, McDermott, A, Dukes E, Sadosky A, Petrie CD, Martin S. 2009. Measurement properties of the Medical Outcomes Study Sleep Scale in patients with fibromyalgia. *Sleep Medicine* 10:766-770.
- Cappelleri JC, Bell SS, Althof SE, Siegel RL, Stecher VJ. 2006. Comparison between sildenafil-treated subjects with erectile dysfunction and control subjects on the Self-Esteem And Relationship questionnaire. *Journal of Sexual Medicine* 3:274-282.
- Cappelleri JC, Althof SE, O'Leary MP, Tseng L-J, on behalf of the US and International SEAR Study Group. 2007. Analysis of single items on the Self-Esteem And Relationship questionnaire in men treated with sildenafil citrate for erectile dysfunction: Results of two double-blind placebo-controlled trials. *BJU International* 101:861-866.
- Russell IJ, Crofford LJ, Leon T, Cappelleri JC, Bushmakin AG, Whalen E, Barrett JA, Sadosky A. 2009. The effects of pregabalin on sleep disturbance symptoms among individuals with fibromyalgia syndrome. *Sleep Medicine* 10:604-610.
- Thompson JR, Cappelleri JC, Getter C, Pleil A, Reichel M, Wolf S. 2007. Enhanced interpretation of instrument scales using the Rasch model. *Drug Information Journal* 41:541-550.

General References

- Cappelleri JC, Bushmakin AG. 2014. Interpretation of patient-reported outcomes. *Statistical Methods in Medical Research*. 23:460-483.
- Cappelleri JC, Zou KH, Bushmakin AG, Alvir JMJ, Alemayehu D, Symonds T. 2013. *Patient-Reported Outcomes: Measurement, Implementation and Interpretation*. Boca Raton, Florida: Chapman & Hall/CRC Press.
- Coon CD, Cook KF. 2018. Moving from significance to real-world meaning: methods for interpreting change in clinical outcome assessment scores. *Quality of Life Research* 27:33-40.
- McLeod LD, Cappelleri JC, Hays RD. 2016. Best (but of forgotten) practices: Expressing and interpreting meaning and effect sizes in clinical outcome assessments. *American Journal of Clinical Nutrition* 103:685-693 (with erratum).
- Revicki D, Erickson PA, Sloan JA, Dueck A, Guess H, Santanello NC and the Mayo/FDA Patient-Reported Outcomes Consensus Meeting Group. 2007. Interpreting and reporting results based on patient-reported outcomes. *Value in Health* 10:S116-S124.
- Revicki, D, Hays RD, Cella D, Sloan J. 2008. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. *Journal of Clinical Epidemiology* 61:102-109.
- Sloan JA, Cella D, Hays. 2005. Clinical significance of patient-reported questionnaire data: another step toward consensus. *Journal of Clinical Epidemiology* 58:1217-1219.

Patient-Reported Outcomes

Measurement, Implementation and Interpretation

> Joseph C. Cappelleri Kelly H. Zou Andrew G. Bushmakin Jose Ma. J. Alvir Demissie Alemayehu Tara Symonds

> > CRC Press Taylor & Francis Group CHAPMAN & HALL BOOK