Methods for Interpretation of PatientReported Outcomes

Joseph C. Cappelleri, PhD, MPH
Pfizer Inc
joseph.c.cappelleri@pfizer.com

Invited one-hour tutorial at BASS XXV $-25^{\text {th }}$ Annual Biopharmaceutical Applied Statistics Symposium, Savannah, Georgia, October 15-19, 2018

Learning Objective

- To understand the methods for interpretation of patient-reported outcomes
- Anchor-based approaches
- Percentage based on thresholds
- Criterion-group interpretation
- Statistical significance and clinical equivalance
- Content-based interpretation
- Clinical important difference
- Distribution-based approaches
- Standardized effect size
- Probability of relative benefit
- Cumulative distribution function
- Mediation analysis

Importance of Interpretation

- PRO results must be interpreted by attaching meaning to them
- Patients and other stakeholders benefit
- Applying methods to enrich interpretation of PRO scores

Anchor-based Approaches

What is an Anchor?

- Anchor measure is external to the target PRO measure of interest
- Anchor measure should bear an appreciable correlation with the PRO measure
- Anchor measure should itself be clearly interpretable

Percentage Based on Thresholds

- Show percentage of patients above and below some specified value, which is an anchored value with a meaningful criterion.
- Example: Erectile function domain of International Index of Erectile Function
- Example: Severity categorization on Fibromyalgia Impact Questionnaire (FIQ)

Severity Categorization of FIQ Total Score Using Pain Severity as an Anchor

Source: Bennett et al. 2009

Simulated Example in SAS:

FIQ Severity Categorization (first 3 subjects)

	ID	Visit	Score	Pain
.	1	1	86.477679987	9.4652601914
$=$	1	2	73.332337615	7.9678018435
.	2	1	84.024696292	8.9303289077
.	3	1	86.354397654	9.1243845085
.	3	2	70.958155512	6.6441290133
.	3	3	52.8051996	5.8536769545
,	3	4	43.765302507	4.6849460105
.	3	5	42.117163151	3.326784542
.	3	6	16.134948499	1.9310167857
0	3	7	15.65229953	0.8598846265

SAS Code:

FIQ Severity Categorization

```
Proc Mixed data=_mixed_2;
    Class ID Visit ;
    Model Score = Pain / ddfm=kr s;
    Repeated Visit / Type=UN Subject=ID;
    Estimate " Pain =0 " Intercept 1 Pain 0 /cl;
    Estimate " Pain =1 " Intercept 1 Pain \(1 / \mathrm{cl}\);
    Estimate " Pain =2 " Intercept 1 Pain \(2 / c l ;\)
    Estimate " Pain =3 " Intercept 1 Pain \(3 / c l ;\)
    Estimate " Pain =4 " Intercept 1 Pain \(4 / c l ;\)
    Estimate " Pain =5 " Intercept 1 Pain 5 /cl;
    Estimate " Pain =6 " Intercept 1 Pain 6 /cl;
    Estimate " Pain =7 " Intercept 1 Pain 7 /cl;
    Estimate " Pain =8 " Intercept 1 Pain 8 /cl;
    Estimate " Pain =9 " Intercept 1 Pain 9 /cl;
    Estimate " Pain =10" Intercept 1 Pain 10 /cl;
    Estimate " Pain =3.5 " Intercept 1 Pain 3.5 /cl;
    Estimate " Pain =6.5 " Intercept 1 Pain \(6.5 / c l ;\)
Run;
```


Results from Simulated Example

Standard

Label	Estimate	Error	Pr $>\|t\|$	Alpha	Lower	Upper
Pain $=0$	6.5523	1.8715	0.0024	0.05	2.6299	10.4746
Pain $=1$	15.5845	1.5984	$<.0001$	0.05	12.2173	18.9517
Pain $=2$	24.6168	1.3292	$<.0001$	0.05	21.7971	27.4364
Pain $=$ 3	33.6490	1.0668	$<.0001$	0.05	31.3650	35.9330
Pain $=4$	42.6812	0.8179	$<.0001$	0.05	40.9150	44.4475
Pain $=5$	51.7135	0.5995	$<.0001$	0.05	50.4335	52.9935
Pain =6	60.7457	0.4576	$<.0001$	0.05	59.8182	61.6733
Pain =7	69.7780	0.4679	$<.0001$	0.05	68.8473	70.7087
Pain =8	78.8102	0.6229	$<.0001$	0.05	77.5709	80.0495
Pain =9	87.8425	0.8465	$<.0001$	0.05	86.1555	89.5294
Pain $=10$	96.8747	1.0976	$<.0001$	0.05	94.6826	99.0669
Pain $=3.5$	38.1651	0.9400	$<.0001$	0.05	36.1427	40.1876
Pain $=6.5$	65.2619	0.4408	$<.0001$	0.05	64.3820	66.1417

Criterion-group Interpretation

- Involves a comparison of scores from the particular group of interest to a criterion group
- Criterion group is a known group worthy of comparison which can serve as a yardstick
- For example, criterion group can be a healthy group, general population, or clinical group

Baseline Mean Scores on the Medical Outcomes Study Sleep Scale: Patients with Fibromyalgia vs. Values from the U.S. General Population

Source: Cappelleri et al. 2009

Classification of Tests on Statistical Significance and Clinical Equivalence

	Statistica	cance Test
	Statistically Significant from 0 (95\% Cl excludes 0)	Not Statistically Significant from 0 (95\% Cl includes 0)
Clinically Equivalent (entire 90\% CI within region of equivalence) Clinical	Cell I Clinically Equivalent and Statistically Significant	Cell II Clinically Equivalent and Not Statistically Significant
Equivalence Test Not Clinically Equivalent (entire 90\% CI not within region of equivalence)	Cell III Not Clinically Equivalent and Statistically Significant	Cell IV Not Clinically Equivalent and Not Statistically Significant

Difference of Control (No ED) Mean versus Pre-treatment and Post-treatment Means on the

 Self-Esteem Subscale of the Self-Esteem And Relationship Questionnaire

Source: Cappelleri et al. 2006

Content-based Interpretation

- Considered for a multi-item PRO measure
- Uses a representative item, along with its response categories, internal to the measure itself
- Mapping can be obtained using descriptive statistics, item response theory, ordinal logistic regression, and binary logistic regression

Probability of Little or No Difficulty:
 Near-Vision Subscale of the NEI-VFQ

Clinical Important Difference (CID)

- Statistical significance does not imply clinical significance
- PRO score (or change in PRO score) as outcome regressed on an anchor predictor
- Anchor: Patient Global Impression of Change (PGIC, retrospective)
1=very much improved, 2=much improved, 3=minimally improved, $4=$ no change, $5=$ minimally worse, $6=$ much worse, $7=$ very much worse
- Anchor: Patient Global Impression-Severity (PGIS, serial) 1=none, 2=mild, 3=moderate, 4=severe
- Anchor: Clinical Global Impression-Severity (CGIC, serial)

CID on FIQ Using PGIC as Continuous Anchor

Dataset Structure in Simulated Example

	ID	Treatment	Visit	Baseline	Y	PGIC	ChangeScore	ChangeScorePct
,	1	1	0	9.75601				
:	1	1	1	9.75601	15.7728	1	6.016796888	61.6727353
,	1	1	2	9.75601	17.3098	2	7.553782138	77.4269789
,	2	1	0	10.6291				
-	2	1	1	10.6291	13.8939	1	3.264826284	30.7159251
-	2	1	2	10.6291	16.0391	1	5.409958472	50.8976174
,	2	1	3	10.6291	17.6936	2	7.064543684	66.4641778
-	2	1	4	10.6291	19.0151	2	8.386011809	78.8967278
,	3	1	0	11.297				
10	3	1	1	11.297	13.6029	1	2.305966046	20.4122409
"	3	1	2	11.297	15.3573	2	4.060369963	35.9420947
12	3	1	3	11.297	17.8058	2	6.508858139	57.615931
13	3	1	4	11.297	21.2385	2	9.941551256	88.0018766
${ }^{*}$	3	1	5	11.297	22.7094	2	11.41240335	101.021751
15	3	1	6	11.297	21.6062	2	10.30918764	91.2561668
${ }^{6}$	4	1	0	11.4949				
"	4	1	1	11.4949	13.2274	1	1.732509369	15.0720212
${ }^{18}$	4	1	2	11.4949	15.5836	1	4.088712435	35.5698858
${ }^{19}$	4	1	3	11.4949	19.1823	1	7.687446885	66.8771924
x	4	1	4	11.4949	21.4507	2	9.955827217	86.6110403
2	4	1	5	11.4949	23.3353	2	11.84039842	103.005928
2	4	1	6	11.4949	22.335	2	10.84008614	94.3036794
a	5	1	0	9.84169				
2	5	1	1	9.84169	13.5146	1	3.672902462	37.3198351
\%	5	1	2	9.84169	16.7488	1	6.907063293	70.1816794
${ }^{*}$	5	1	3	9.84169	17.0049	2	7.163168226	72.7839248
2	5	1	4	9.84169	20.6806	2	10.83886197	110.132122
${ }^{\circ}$	5	1	5	9.84169	21.314	2	11.47227251	116.568115
\%	5	1	6	9.84169	23.1386	2	13.29694792	135.108381
\cdots	5	1	7	9.84169	25.3353	3	15.49361641	157.428414 。

Proc Mixed Longitudinal Modeling: CID Estimation (Continuous Anchor)

Data _mixed_3;
Set _mixed_2;
Where Visit In (1 23456);

Run;

Proc Mixed data=_mixed_3;
Class ID Visit ;
Model ChangeScore = PGIC / ddfm=kr s;
Repeated Visit / Type=AR(1) /*UN*/ Subject=ID;
Estimate "CID(One Category Change) = " PGIC $1 / \mathrm{cl}$;
Estimate " PGIC=1 " Intercept 1 PGIC 1/cl;
Estimate " PGIC=2 " Intercept 1 PGIC 2/cl;
Estimate " PGIC=3 " Intercept 1 PGIC 3 /cl;
Estimate " PGIC=4 " Intercept 1 PGIC 4 /cl;
Estimate " PGIC=5 " Intercept 1 PGIC 5 /cl;
Estimate " PGIC=6 " Intercept 1 PGIC 6 /cl;
Estimate " PGIC=7 " Intercept 1 PGIC 7 /cl;
Run;

Estimated Mean Changes and CID

Label	Estimate	Standard Error	$\mathrm{Pr}>\|\mathrm{t}\|$	Lower	Upper
CID					
(one-category change)	3.9665	0.0724	<. 0001	3.8242	4.1088
PGIC=1	4.9722	0.1417	<. 0001	4.6939	5.2504
PGIC=2	8.9387	0.0987	<. 0001	8.7445	9.1328
PGIC=3	12.9052	0.0997	<. 0001	12.7090	13.1013
PGIC=4	16.8717	0.1437	<. 0001	16.5893	17.1540
PGIC=5	20.8381	0.2046	<. 0001	20.4363	21.2400
PGIC=6	24.8046	0.2712	<. 0001	24.2719	25.3374
PGIC=7	28.7711	0.3403	<. 0001	28.1028	29.4394

Proc Mixed Longitudinal Modeling:

CID Estimation (Categorical Anchor) - Sensitivity Analysis

Proc Mixed data=_mixed_3; Class ID Visit PGIC ; Model ChangeScore = PGIC / ddfm=kr s; Repeated Visit / Type=AR(1) Subject=ID; Lsmeans PGIC /cl; Run;

Estimated Mean Changes and CID: Sensitivity Analysis (Same Simulated Data)

	Standard					
Effect	PGIC	Estimate	Error	Pr $>\|t\|$	Lower	Upper
PGIC	1	5.3561	0.1939	$<.0001$	4.9757	5.7365
PGIC	2	8.7256	0.1233	$<.0001$	8.4836	8.9677
PGIC	3	12.8642	0.1564	$<.0001$	12.5572	13.1713
PGIC	4	17.3115	0.2384	$<.0001$	16.8438	17.7792
PGIC	5	20.6988	0.3406	$<.0001$	20.0305	21.3672
PGIC	6	25.0653	0.5040	$<.0001$	24.0764	26.0542
PGIC	7	26.7490	2.3192	$<.0001$	22.1987	31.2993

Mean Difference in PRO Measure as Function of PGIC

Frequencies on PGIC

PGIC	Frequency	Cumulative Percent	Cumulative Frequency	Percent
1	179	14.98	179	14.98
2	518	43.35	697	58.33
3	300	25.10	997	83.43
4	114	9.54	1111	92.97
5	57	4.77	1168	97.74
6	26	2.18	1194	99.92
7	1	0.08	1195	100.00

Distribution-based Methods

Distribution-based Methods

- Based on empirical distribution and characteristics of the data
- Adjunct to, not substitute for, anchor-based methods
- Informs on meaning of difference or change in PRO measure but not whether change is clinically significant to patients
- Different types
- Standardized Effect Size
- Probability of Relative Benefit
- Cumulative Distribution Function

Standardized Effect Size

- (Standardized) Effect size = magnitude of effect relative to variability
- 0.2, ‘small'; 0.5, 'medium'; 0.8, 'large’
- Within group: before vs. after therapy
- Between groups: treatments A vs. B

(Standardized) Effect Size

- Within group
- Effect = average change score on PRO
- Variability = baseline standard deviation (SD)
- Or variability = SD of individual changes
- Between groups
- Effect = average difference between groups at follow-up
- Or effect = average difference between groups from baseline to follow-up
- Variability = pooled between-group SD at baseline
- Or variability = pooled between-group SD at follow-up
- Or variability = pooled SD of individual changes

Example: Effect Size

- Effect size for all subjects in single intervention study
- Effect size $=$ Mean difference score SD at baseline

Example: Effect Size

SEAR Component	Baseline Mean \pm SD	End Mean \pm SD	Difference	Effect Size
Sexual Relationship	42 ± 22	78 ± 21	36 ± 23	1.6
Confidence	55 ± 26	81 ± 21	26 ± 26	1.0
Self-esteem	52 ± 27	81 ± 22	29 ± 28	1.1
Overall Relationship	62 ± 30	80 ± 24	18 ± 32	0.6
Overall	48 ± 22	79 ± 20	31 ± 22	1.4

Source: Althof et al. 2003

Probability of Relative Benefit

- Based on Wilcoxon rank-sum test using ridit analysis
- Convert Mann-Whitney U statistic to a probability
- Probability represents the chance that a randomly selected patient from the treatment group has a more favorable response than a randomly selected patient from the control group

Example: Probability of Relative Benefit

Source: Cappelleri et al. 2007

Cumulative Distribution Function

- An alternative or supplement to responder analysis
- Display a continuous plot of the percent change (or absolute change) from baseline on the horizontal axis and the cumulative percent of patients experiencing up to that change on the vertical axis
- Such a cumulative distribution of response curve one for each treatment group - would allow a variety of response thresholds to be examined simultaneously and collectively, encompassing all available data

Illustrative Cumulative Distribution Function: Experimental Treatment (solid line) better than Control Treatment (dash line) -- Negative changes indicate improvement

Results showing no comparative efficacy of

Drug B

Results showing the efficacy of

over Drug B

Aricept ${ }^{\circ}$ label from 10/13/2006

Figure 5. Cumulative Percentage of Patients with Specified Changes from Baseline ADAS-cog Scores. The Percentages of Randomized Patients Within Each Treatment Group Who Completed the Study Were: Placebo $93 \%, 5 \mathrm{mg} / \mathrm{day} 90 \%$ and $10 \mathrm{mg} / \mathrm{day} 82 \%$.

Cymbalta ${ }^{\circledR}$ label from 11/19/2009 (x-axis reversed)

Figure 1: Percentage of Patients Achieving Various Levels of Pain Relief as Measured by 24-Hour Average Pain Severity - Study 1

Mediation Analysis

Basic Mediation Model

A Few Equations

- $Y_{j}=i_{1}+b \times X_{j}+c \times M_{j}+e_{1 j}$
- $M_{j}=i_{2}+a \times X_{j}+e_{2 j}$
- $Y_{j}=\left(i_{1}+c \times i_{2}\right)+(b+c \times a) \times X_{j}+\left(c \times e_{2 j}+e_{1 j}\right)$

$$
\begin{aligned}
\text { direct effect } & =100\left(\frac{b}{b+c \times a}\right) \\
\text { indirect effect } & =100\left(\frac{c \times a}{b+c \times a}\right)
\end{aligned}
$$

Treatment Affects Sleep Directly and Indirectly via Pain

Assumptions

- No unmeasured confounding
- Predictor-outcome
- Predictor-mediator
- Mediator-outcome
- Model with no interaction is correctly specified
- Predictor and mediator on outcome

Published Example

-------> Indirect Effect of Treatment on Sleep Disturbance via Pain

Results

Effect	Effects from TRT300 to SLEEP	Effects from TRT450 to SLEEP	Effects from TRT600 to SLEEP
Total	-9.94	-12.73	-17.79
Indirect	$-1.95\left(^{*}\right)$	-3.44	-4.35
(Indirect / Total) $\times 100 \%$	19.6% (*) *	27%	24.4%
(Direct / Total) \times 100%	80.4%	73%	75.6%

(*) indicates not statistically significant result, p-value >0.05
Source: Russell et al. 2009

Testing for Model Invariance between Groups

difference of direct effects (Group 1 vs Group 2):

$$
=100\left(\frac{b 1}{b 1+c 1 \times a 1}-\frac{b_{2}}{b 2+c 2 \times a 2}\right)
$$

difference of indirect effects (Group 1 vs Group 2):

$$
=100\left(\frac{c 1 \times a 1}{b 1+c 1 \times a 1}-\frac{c 2 \times a 2}{b 2+c 2 \times a 2}\right)
$$

Summary

- Anchor-based approaches
- Percentage based on thresholds
- Criterion-group interpretation
- Statistical significance and clinical equivalance
- Content-based interpretation
- Clinical important difference
- Distribution-based approaches
- Standardized effect size
- Probability of relative benefit
- Cumulative distribution function
- Mediation analysis

Journal References: Illustrations Cited

- Althof SE. Cappelleri JC, Shpilsky A, Stecher V, Diuguid C, Sweeney M, Duttagupta S. 2003. Treatment responsiveness of the Self-Esteem And Relationship (SEAR) questionnaire in erectile dysfunction. Urology 61:888-893.
- Bennett RM, Bushmakin AG, Cappelleri JC, Zlateva G, Sadosky AB. 2009. Minimally clinically important difference in the Fibromyalgia Impact Questionnaire (FIQ). Journal of Rheumatology 36:1304-1311.
- Cappelleri JC, Bushmakin AG, McDermott, A, Dukes E, Sadosky A, Petrie CD, Martin S. 2009. Measurement properties of the Medical Outcomes Study Sleep Scale in patients with fibromyalgia. Sleep Medicine 10:766-770.
- Cappelleri JC, Bell SS, Althof SE, Siegel RL, Stecher VJ. 2006. Comparison between sildenafil-treated subjects with erectile dysfunction and control subjects on the Self-Esteem And Relationship questionnaire. Journal of Sexual Medicine 3:274-282.
- Cappelleri JC, Althof SE, O'Leary MP, Tseng L-J, on behalf of the US and International SEAR Study Group. 2007. Analysis of single items on the Self-Esteem And Relationship questionnaire in men treated with sildenafil citrate for erectile dysfunction: Results of two double-blind placebo-controlled trials. BJU International 101:861-866.
- Russell IJ, Crofford LJ, Leon T, Cappelleri JC, Bushmakin AG, Whalen E, Barrett JA, Sadosky A. 2009. The effects of pregabalin on sleep disturbance symptoms among individuals with fibromyalgia syndrome. Sleep Medicine 10:604-610.
- Thompson JR, Cappelleri JC, Getter C, Pleil A, Reichel M, Wolf S. 2007. Enhanced interpretation of instrument scales using the Rasch model. Drug Information Journal 41:541-550.

General References

- Cappelleri JC, Bushmakin AG. 2014. Interpretation of patient-reported outcomes. Statistical Methods in Medical Research. 23:460-483.
- Cappelleri JC, Zou KH, Bushmakin AG, Alvir JMJ, Alemayehu D, Symonds T. 2013. PatientReported Outcomes: Measurement, Implementation and Interpretation. Boca Raton, Florida: Chapman \& Hall/CRC Press.
- Coon CD, Cook KF. 2018. Moving from significance to real-world meaning: methods for interpreting change in clinical outcome assessment scores. Quality of Life Research 27:33-40.
- McLeod LD, Cappelleri JC, Hays RD. 2016. Best (but of forgotten) practices: Expressing and interpreting meaning and effect sizes in clinical outcome assessments. American Journal of Clinical Nutrition 103:685-693 (with erratum).
- Revicki D, Erickson PA, Sloan JA, Dueck A, Guess H, Santanello NC and the Mayo/FDA PatientReported Outcomes Consensus Meeting Group. 2007. Interpreting and reporting results based on patient-reported outcomes. Value in Health 10:S116-S124.
- Revicki, D, Hays RD, Cella D, Sloan J. 2008. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. Journal of Clinical Epidemiology 61:102-109.
- Sloan JA, Cella D, Hays. 2005. Clinical significance of patient-reported questionnaire data: another step toward consensus. Journal of Clinical Epidemiology 58:1217-1219.

Patient-Reported Outcomes

Measurement, Implementation and Interpretation

Joseph C. Cappelleri Kelly H. Zou
Andrew G. Bushmakin Jose Ma. J. Alvir
Demissie Alemayehu
Tara Symonds
(CRC CRC Press
CHAPMAN \& HALL BOOK

